How Clustering Affects Epidemics in Random Networks

نویسندگان

  • Emilie Coupechoux
  • Marc Lelarge
چکیده

Motivated by the analysis of social networks, we study a model of random networks that has both a given degree distribution and a tunable clustering coefficient. We consider two types of growth processes on these graphs: diffusion and symmetric threshold model. The diffusion process is inspired from epidemic models. It is characterized by an infection probability, each neighbor transmitting the epidemic independently. In the symmetric threshold process, the interactions are still local but the propagation rule is governed by a threshold (that might vary among the different nodes). An interesting example of symmetric threshold process is the contagion process, which is inspired by a simple coordination game played on the network. Both types of processes have been used to model spread of new ideas, technologies, viruses or worms and results have been obtained for random graphs with no clustering. In this paper, we are able to analyze the impact of clustering on the growth processes. While clustering inhibits the diffusion process, its impact for the contagion process is more subtle and depends on the connectivity of the graph: in a low connectivity regime, clustering also inhibits the contagion, while in a high connectivity regime, clustering favors the appearance of global cascades but reduces their size. For both diffusion and symmetric threshold models, we characterize conditions under which global cascades are possible and compute their size explicitly, as a function of the degree distribution and the clustering coefficient. Our results are applied to regular or power-law graphs with exponential cutoff and shed new light on the impact of clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How clustering affects the bond percolation threshold in complex networks.

The question of how clustering (nonzero density of triangles) in networks affects their bond percolation threshold has important applications in a variety of disciplines. Recent advances in modeling highly clustered networks are employed here to analytically study the bond percolation threshold. In comparison to the threshold in an unclustered network with the same degree distribution and corre...

متن کامل

Network structure, and vaccination strategy and effort interact to affect the dynamics of influenza epidemics.

There is growing interest in understanding and controlling the spread of diseases through realistically structured host populations. We investigate how network structures, ranging from circulant, through small-world networks, to random networks, and vaccination strategy and effort interact to influence the proportion of the population infected, the size and timing of the epidemic peak, and the ...

متن کامل

Random Spatial Networks: Small Worlds without Clustering, Traveling Waves, and Hop-and-Spread Disease Dynamics

Random network models play a prominent role in modeling, analyzing and understanding complex phenomena on real-life networks. However, a key property of networks is often neglected: many real-world networks exhibit spatial structure, the tendency of a node to select neighbors with a probability depending on physical distance. Here, we introduce a class of random spatial networks (RSNs) which ge...

متن کامل

An Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks

LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...

متن کامل

On existence of triangles, clustering, and small-world property of random key graphs

Random key graphs have been introduced about a decade ago in the context of key predistribution schemes for securing wireless sensor networks (WSNs). They have received much attention recently with applications spanning the areas of recommender systems, epidemics in social networks, cryptanalysis, and clustering and classification analysis. This paper is devoted to analyzing various properties ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1202.4974  شماره 

صفحات  -

تاریخ انتشار 2012